Association of the variants in AGT gene with modified drug response in Korean aspirin-intolerant asthma patients

Charisse Flerida A. Pasaje, Jeong-Hyun Kim, Byung-Lae Park, Hyun Sub Cheong, Tae-Joon Park, Jin-Sol Lee, Yongha Kim, Joon Seol Bae, Jin Moo Kim, Jong Sook Park, Choon-Sik Park, Hyoung Doo Shin,

*Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea

**Department of Genetic Epidemiology, SNP Genetics, Inc., Seoul 153-803, Republic of Korea

Genome Research Center for Allergy and Respiratory Diseases, Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 420-767, Republic of Korea

**Corresponding author. Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea. Tel.: +82 2 705 8615; fax: +82 2 2026 4299.

**Corresponding author. Division of Allergy and Respiratory Medicine, Soonchunhyang University Seoul Hospital, Seoul 140-743, Republic of Korea. Tel.: +82 32 621 5105; fax: +82 32 621 502.

E-mail addresses: schlff@schbc.ac.kr (C.-S. Park), hdshin@sogang.ac.kr (H.D. Shin).

**Corresponding author. Division of Allergy and Respiratory Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 420-767, Republic of Korea.

**Corresponding author. Department of Life Science, Sogang University, 1 Shinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea.

ARTICLE INFO

Article history:
Received 29 July 2010
Received in revised form
17 December 2010
Accepted 14 May 2011

Keywords:
Aspirin-intolerant asthma
AGT
MLK
Polymorphism
Haplotype

ABSTRACT

The angiotensinogen (AGT) gene enhances the effect of several bronchoconstrictors and produces a peptide that is accumulated in the airways of asthma patients; events that may underpin the pathogenesis of aspirin-intolerant asthma (AIA). To carry out a case-control analysis between AGT and aspirin-induced bronchospasm following treatment with an anti-asthma drug, montelukast (MLK), 38 single nucleotide polymorphisms (SNPs) in AGT were genotyped in 56 AIA cohort. Genotyping was performed with TaqMan assay and haplotypes were inferred using PHASE algorithm ver. 2.0. Statistical analyses of each SNPs and haplotypes were performed using SAS version 9.1. Among 13 variants displaying significant signals, two SNPs (AGT+2401C>G and AGT+2476C>T) in the intrinsic region of AGT were significantly associated with modification of drug response even after correction for multiple testing (P corr = 0.0009–0.002; P corr = 0.02–0.03). Furthermore, the two variants also exhibited associations with MLK response rate (P = 0.0003–0.0006; P corr = 0.006–0.01). Although our results are preliminary and further replication in a larger-scale group of subjects should be warranted, these observations provide evidence that AGT variants might be one of genetic factors involved in the response of anti-asthma drugs in AIA patients.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Aspirin-intolerant asthma (AIA) refers to a distinct clinical syndrome that is characterized by bronchial asthma, aspirin sensitivity and nasal polyps. AIA prevalence has been reported to be around 10–20% in adult asthmatics [1,2], primarily affecting women than men [3]. Moreover, ingestion of aspirin may be a possible factor in life threatening asthma attacks since it has been observed that up to 25% of asthma patients who required emergency mechanical ventilation are aspirin-intolerant [4,5]. To date, the exact mechanisms involved in the pathophysiology of AIA are still poorly defined.

Angiotensin II (Ang II), one of angiotensins produced by the angiotensinogen (AGT) gene, has been known as a potent vasoconstrictor of vascular smooth muscle and a bronchoconstrictor agent that enhances the effect of other bronchoconstrictors in vitro [6] and in vivo [7]. Previous studies have shown that elevation of Ang II levels has been observed in some acute asthma patients [8,9]. Furthermore, previous evidence implicating Ang II in the release of leukotriene C4 (LTC4) [10,11] and associations between polymorphisms in the leukotriene C4 synthase (LTC4S) gene with the onset of AIA [12] suggest that Ang II-LTC4 interactions may be an essential mechanism of AIA.

Overexpression of cysteinyl leukotriene (cysLT) receptor 1 (cysLT-R1), one of the binding proteins for cysLTs, is crucial in the pathogenesis of AIA [13,14] and has been widely studied for disease therapy. Montelukast (MLK), a cysLT-R1 antagonist, is a well-known drug for asthma. Treatment with MLK can improve lung function during airway inflammation and asthma management in AIA.
This drug relieves asthma symptoms through reduction of leukotriene-generated bronchoconstriction by preventing specific cysteine from binding to the cysteine receptor in the lungs and bronchus [16]. A recent study has shown that MLK treatment for several weeks produces significant decline in forced expiratory volume in 1 s (FEV1) following aspirin challenge [17], suggestive of the drug’s therapeutic effect in AIA patients.

Considering that AGT facilitates activation of Ang II, an enzyme that is leaked in the airways as a result of increased vascular permeability during airway inflammation [18], and that AGT affects the bronchoconstrictive function of leukotrienes, we hypothesize that the AGT gene may play a significant role in the potentiality of AIA patients to respond to MLK. A case-control analysis was carried out in order to investigate the association between AGT gene variations and anti-asthma drug response among AIA patients in a Korean population.

2. Materials and methods

2.1. Study subjects

A total of 56 aspirin-intolerant asthmatics were recruited from patients enrolled at the Asthma Genome Research Center of Soonchunhyang University Bucheon hospital in Korea from 2003 to 2008. Each patient showed clinical symptoms that met the criteria for asthma according to the Global Initiative for Asthma (GINA) Global strategy for asthma management and prevention study. Evaluation of the subjects included airway reversibility measured by a positive bronchodilator response of >15% increase in FEV1 after inhalation of two puffs of aerosolized albuterol (100 μg) and/or airway hyperreactivity to <10 mg/ml methacholine [19]. The exclusion criteria included asthma duration that is less than a year, acutely exacerbated asthma within 4 weeks, history of brittle asthma, atopy to pollens, parenchymal lung disease apparent on simple chest radiography, and previous use of leukotriene antagonists. Patients with hypertension and diabetes or those who were previously taking angiotensin converting enzyme inhibitors were excluded from this study. After written consents were obtained, MLK (10 mg) was administered to all of the AIA patients daily for 12 weeks before the second aspirin challenge was carried out [17]. From the results of the second aspirin challenge, subjects were classified into unnormalized group (cases) and normalized group (controls) when aspirin-induced rate of FEV1 decline was >15% and <15%, respectively. The unnormalized subjects consisted of AIA patients who least responded to MLK treatment, whereas the normalized group was composed of AIA patients who responded well to the treatment. The study protocol was approved by the Institutional Review Board.

2.2. Single nucleotide polymorphism (SNP) selection, genotyping and haplotype construction

A total of 38 common SNPs in the AGT gene were selected from the dbSNP in the National Center for Biotechnology Information (build 36) and International HapMap Project (http://hapmap.ncbi.nlm.nih.gov/) based on minor allele frequency (MAF) that is over 10% in Asian population and linkage disequilibrium (LD) status. Genotyping was performed with TaqMan assay using the ABI prism 7900HT sequence detection system (Applied Biosystems, CA, USA), and data quality was assessed by duplicate DNAs (n=10). Genotyped data were obtained using the ABI PRISM sequence detection system (SDS) software version 2.3. With an average call rate of 99.9%, a total of 38 SNPs in AGT were successfully genotyped in 56 AIA patients of Korean ethnicity. Using the PHASE algorithm ver. 2.0 [20], haplotypes were inferred from the genotyped SNPs.

2.3. Statistical analyses

Wilcoxon signed ranks sum test was used to compare the effects of MLK treatment according to clinical parameters. To determine the association between the genotype distributions of unnormalized and normalized patients, multivariate logistic analysis was carried out controlling for age (continuous value), gender (male = 0, female = 1), smoking status (non-smoker = 0, ex-smoker = 1, smoker = 2), atopy (absence = 0, presence = 1) and body mass index (BMI) as covariates to eliminate or reduce any confounds that might influence the findings. Association analysis for the haplotypes inferred in this study was managed by SAS version 9.1 (SAS Inc., Cary, NC). Lewontin’s D’ (|D’|) and the LD coefficient r² were then examined to measure LD between all pairs of biallelic loci [21]. For further analyses, differences in the MLK response rate among the genotypes and haplotypes were measured using a regression model. To achieve optimal correction for multiple testing of SNPs that are in LD, the effective number (20.541) of independent marker loci in AGT was calculated using the SNPSpD software (http://genepli.qimr.edu.au/general/daleN/SNPSpD/), a program that is based on the spectral decomposition (SpD) of matrices of pair-wise LD between SNPs [22].

3. Results

3.1. Characteristics of the study subjects

In the results from a total of 56 AIA patients of Korean ethnicity who were assessed on their response to a twelve-week MLK treatment, the aspirin-induced decline of FEV1 observed in 21 unnormalized cases was more than 15% after the second aspirin challenge, whereas the remaining 35 normalized controls showed less than 15% decline in aspirin-induced FEV1 on the same examination (Table 1). Any side effects from MLK administration that might interrupt the medication did not occur in the duration of the study. The unnormalized patients who least responded to the drug showed a higher PC20 methacholine level and a lower positive rate of skin test compared to the normalized controls (Table 1). The clinical profiles of the study subjects are summarized in Table 1.

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Clinical profiles of the study subjects.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical profile</td>
<td>Unnormalized</td>
</tr>
<tr>
<td>Number of subjects</td>
<td>21</td>
</tr>
<tr>
<td>Age [year, mean (range)]</td>
<td>44.7 (25.6–66.8)</td>
</tr>
<tr>
<td>Sex (male/female)</td>
<td>2/19</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>23.09 ± 2.82</td>
</tr>
<tr>
<td>Smoker (current smoker/ex-smoker) (%)</td>
<td>28.57 (4.76/23.81)</td>
</tr>
<tr>
<td>PVC, predicted (%)</td>
<td>82.05 ± 22.25</td>
</tr>
<tr>
<td>FEV1, predicted (%)</td>
<td>76.95 ± 23.82</td>
</tr>
<tr>
<td>PC20 methacholine (mg/ml)</td>
<td>6.25 ± 9.23</td>
</tr>
<tr>
<td>Positive rate of skin test (%)</td>
<td>57.14</td>
</tr>
<tr>
<td>Initial aspirin-induced rate of FEV1 decline</td>
<td>35.37 ± 13.06</td>
</tr>
<tr>
<td>Second aspirin-induced rate of FEV1 decline</td>
<td>26.06 ± 9.82</td>
</tr>
<tr>
<td>MLK response rate*</td>
<td>19.49 ± 34.79</td>
</tr>
</tbody>
</table>

Unnormalized, AIA induced rate of FEV1 decline after treatment with MLK > 15%. Normalized, AIA induced rate of FEV1 decline after treatment with MLK < 15%. Second aspirin-induced rate of FEV1 decline indicates the decline rate after three months treatment with MLK 10 mg. MLK response rate = (initial aspirin-induced FEV1 decline – second aspirin-induced FEV1 decline)/initial aspirin-induced FEV1 decline × 100. MLK, Montelukast. *P-value < 0.05.
3.2. Genotyping of AGT variants and haplotype construction

With an average call rate of 99.9%, a total of 38 common SNPs in the AGT gene were successfully genotyped in 56 AIA patients who underwent MLK treatment. Among the variants, 7 SNPs are positioned in 5’ flanking region; one SNP each in 5’ and 3’ untranslated regions; 24 SNPs in introns; two SNPs in exon 2; three SNPs in 3’ flanking region (Fig. 1A and Supplementary Table 1). Results from Hardy-Weinberg Equilibrium (HWE) test showed no significant differences between the distribution of the observed genotypes and the expected distributions (P > 0.05; Supplementary Table 1). The MAF of each SNP is shown in Supplementary Table 1. Using the genotyped SNPs, five major haplotypes with frequencies over 0.05 (Fig. 1B) were obtained and analyzed for a possible association with modification of MLK effects. Furthermore, one tight LD block (Fig. 1C) was established from the genotyped SNPs.

3.3. Association of SNPs in AGT with modification of aspirin-induced bronchospasm after treatment with MLK among AIA patients

Logistic analysis of the SNPs in AGT between unnormalized and normalized AIA patients adjusted for age, sex, smoking status, atopy and BMI as covariates showed that 16 SNPs initially exhibited association signals with modified response to MLK treatment depending on the genetic models (P = 0.0009–0.04; Table 2). However, the significance was decreased to nominal evidence after correction for multiple comparisons. Finally, two SNPs, +2401C>G and +2476C>T in intron 2 emerged to be significantly associated with modified response to MLK treatment even after multiple testing corrections (P = 0.0004–0.003; Pcorr = 0.0008–0.02 depending on the models; Table 2). The MAFs of these significant variants were over two-fold higher in the unnormalized group compared to those of the normalized subjects (Table 2). This suggests that variants in AGT may be involved in persistent aspirin-induced bronchospasm despite MLK medication among AIA patients. Results from haplotype analysis, however, revealed no significant association between AGT haplotypes and modified response to MLK treatment.

3.4. Association of the polymorphisms in AGT with MLK response rate

To further investigate whether polymorphisms of the AGT gene might be associated with MLK response rate, regression analysis was performed. Initially, seventeen AGT SNPs revealed association signals with modification of MLK response rate in AIA patients (P = 0.00004–0.04 depending on the models, Table 3). Even after corrections for multiple testing, the two SNPs (+2401C>G and +2476C>T), which showed significant signals in the analysis of aspirin-induced bronchospasm after treatment with MLK, were also associated with MLK response rate (P = 0.00004–0.003; Pcorr = 0.0008–0.02 depending on the models), suggesting that AGT polymorphisms could play a crucial role in the reversibility of lung function abnormalities in AIA patients despite MLK medication.

4. Discussion

One of the serious threats of aspirin-intolerance is the aggravation of acute asthma attacks, requiring patients to undergo mechanical ventilation in some cases [4,5]. Since severe sudden asthma attacks are considered fatal even when patients are treated with fast-acting medicines, researchers are actively engaged in identifying mechanisms that are involved in the development of AIA and lead to novel targets for treatment of the disease. Therefore, findings from this study might reveal an important function of

Fig. 1. Physical map, haplotypes, and LD of the AGT gene. (A) Schematic gene map and SNPs in the AGT gene on chromosome 1q42-q43 (11.5 kb). Black blocks represent coding exons and white blocks represent 5’ and 3’ untranslated regions. The first base of translation site was denoted as nucleotide +1. (B) Haplotypes of AGT. (C) LD coefficient (D0) among AGT SNPs.
The efficacy of the drug has been summarized by previous studies; that it would take effect after 2 h with a single 10 mg dose and 24 h after the last dose with multiple dosing [23], and that a 12-week MLK treatment provides a protective effect against AIA [17]. Similarly, pretreatment with other cysLT receptor antagonists, such as pranlukast, zileuton and zafirlukast, has prevented the pathophysiologic response of asthma after administration of aspirin [24,25]. After conducting different challenges in exercise-induced asthma and AIA, results from recent studies have revealed that all leukotriene-modifying drugs share the ability of preventing bronchoconstriction [26,27], as an additional evidence of the preventive effect of MLK. However, to date there have been minimal studies demonstrating the relationship between the bronchoconstrictive activity of MLK and specific genetic variants.

The human AGT polymorphisms may be clinically relevant in AIA etiology by modulating Ang II, an enzyme that can potentiate the effect of other bronchoconstrictor agents such as the cysLTs [6,7]. Although the exact mechanism of bronchoconstriction by Ang II remains to be explored, a direct effect on airway smooth muscle or the release of other mediators of bronchoconstriction has been demonstrated by a previous study [9]. Furthermore, elevated levels of Ang II as a byproduct of RAS activation have also been observed in some patients with severe acute asthma [8,28]. This information serves as an appropriate reference for the selection of AGT in our association study with the effectiveness of MLK treatment among aspirin-intolerant asthmatics.

In the present study, 38 common SNPs in the AGT gene were genotyped in 21 unnormalized and 35 normalized AIA patients who underwent anti-asthma drug treatment. Unnormalized and normalized groups were determined according to aspirin-induced bronchospasms exhibited by each subject after two rounds of aspirin challenge. Interestingly, after genotyping SNPs of AGT and analyzing corrections for multiple testing, we found a significant association between two SNPs (+2401C>T and +2476C>T) with modified drug response among AIA subjects. Since the minor allele frequencies of these two variants in unnormalized group were 3-
fold and 2.3-fold higher compared to the normalized subjects respectively, the key findings in this study provide evidence that AIA patients carrying either of these polymorphisms may manifest unresponsiveness to the asthma-ameliorating effects of MLK and persistent aspirin-induced bronchospasm. Furthermore, pairwise comparisons of the SNPs in AGT gene established one tight LD block in Korean AIA population (Fig. 2A) compared to those of other ethnic groups generated using the International HapMap Project database (B–D). This unusual LD feature in Korean AIA patients suggests that AGT polymorphisms could be pharmacogenetic markers of AIA and would benefit further studies for asthma management. Also, in further analysis, it was observed that variants in AGT (+4201C>G, +2476C>T and –4045T>C) could affect lung function abnormalities among AIA patients despite ingestion of anti-asthma medication.

Despite the lack of accurate molecular basis for the findings in this study, we speculate that the SNPs displaying association signals may affect the bronchoconstrictive function of the gene. It has been revealed that intrinsic genetic variants create a new splice site [29] as well as affect efficient intron splicing processivity [30], resulting to production of proteins that influence the onset of diseases in a complex manner. Although further functional characterizations of the associated AGT variants are needed, we performed in silico prediction to analyze whether the SNPs (rs2478544, rs2478545, rs3789666, rs2478523) could be potential branch point (BP) sites for alternative splicing using EMBL-EBI splice site prediction (http://www.ebi.ac.uk/ast-sr/wbi.cgi?method=2). However, results showed that the tested SNPs were not estimated to be potential BP sites. On the other hand, previous studies have reported significant associations of the haplotype-tagging +2476C>T SNP with preeclampsia and cardioembolic stroke [31,32], diseases that have also been known to be potentially correlated with asthma [33,34]. These findings provide further evidence that +2476C>T may also play a significant role in non-responsiveness to anti-asthma drug among aspirin-hypersensitive asthmatics.

Another possible functional association between AGT polymorphisms and the lack of response to MLK treatment among AIA patients lies in modulations of the angiotensinogen pathway in eosinophilic airway inflammation and bronchoconstriction among AIA patients [35–37]. Inhibition of the angiotensin converting enzyme...
enzyme (ACE) leads to suppression of Ang II kinase activity and consequent accumulation of kinins and substance P, leading to aggravation of asthma symptoms [38,39]. Furthermore, activation of the arachidonic pathway as a result of ACE inhibition has also been known to potentiate bronchoconstriction among asthmatics [40]. Considering the interaction between LTC4 and Ang II [11], we expect that the antagonistic effect of MLK may indirectly play a role in the angiotensinogen pathway.

With AIA being a rare condition, the few sample size may serve as a limiting factor of this study. Therefore, our preliminary findings needed to be confirmed in future replication studies comparing our results to aspirin-tolerant asthmatics and/or healthy controls. On the other hand, despite previous debates on the role of rare variants in disease susceptibility [41], this study employed the common-disease common-variant (CDCV) hypothesis which is applicable especially for complex diseases [42]. However, most importantly, our findings provide evidence that AGT variants may lead to modification of the anti-asthma drug response among AIA patients. These reports may contribute to our knowledge on the underlying mechanisms of resistance to asthma medications and may provide useful strategies for AIA management. To our knowledge, these findings are the first to demonstrate the clinical significance of AGT variants with response to MLK among AIA patients.

Acknowledgements

This work was supported by a grant from the Korea Health 21 R&D Project (A010249); a grant number M1-0302-00-0073 from Korea Science and Engineering Foundation (KOSEF) funded by the Korea government (MEST) (No. 2009-0080157); and a Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0093822). The DNA samples were generously provided by Soonchunhyang University, Bucheon Hospital Biobank, a member of the National Biobank of Korea, supported by the Ministry of Health, Welfare and Family Affairs, Republic of Korea.

Appendix. Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.pupt.2011.05.007.

References

Fig. 2. LD coefficient (D^2) among AGT SNPs in (A) Korean, (B) Caucasian, (C) Japanese and Chinese, and (D) African populations. CEU, Caucasian; JPT, Japanese; CHB, Chinese; YRI, African.
Yoshida S, Sakamoto H, Ishizaki Y, Onuma K, Shoji T, Nakagawa H, et al. Monte...

